Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 438
Filtrar
1.
J Physiol Pharmacol ; 75(1)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38583438

RESUMO

Kinetochore scaffold 1 (KNL1) is indispensable for generating motile micro-tubule attachments and isolating chromosomes. KNL1 is highly expressed in multiple middle-route tissues and promotes tumor development. However, how it functions in non-small cell lung cancer (NSCLC) is unclear. Real-time quantitative PCR (RT-qPCR) and Western blotting (WB) were used to determine KNL1 expression in NSCLC tissues and cells. The sh-KNL1 or oe-KNL1 was transfected into NSCLC cells. The colony formation assay, cell counting kit-8 (CCK-8) assay, and flow cytometry were used to evaluate cell proliferation and apoptosis. A transwell assay was used to monitor invasion and migration. The CCK-8 assay was used to measure NSCLC cell sensitivity to chemotherapy drugs. WB confirmed the protein levels of apoptosis-related proteins, cell cycle-associated proteins, and the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT)/nuclear factor kappaB (NF-κB) pathway. A PI3K/AKT/NF-κB pathway inhibitor was used to intervene in NSCLC cell transfection along with oe-KNL1, thus revealing the function of the pathway in carcinogenicity mediated by KNL1. In result KNL1 expression was substantially increased in NSCLC tissues and cells. High-level KNL1 expression is related to the poor prognosis of NSCLC patients. KNL1 silencing bolstered promoted NSCLC cell apoptosis and inhibited proliferation, cell cycle progression, invasion, and EMT, whereas KNL1 silencing had the opposite effect. KNL1 knockdown increased NSCLC cell sensitivity to chemical drugs. KNL1 promoted PI3K/AKT/NF-κB pathway activation, while PI3K/AKT/NF-κB pathway inhibition weakened the procancer effect mediated by KNL1 overexpression but had little influence on KNL1 levels. We conclude that KNL1 activates the PI3K/AKT/NF-κB pathway to increase NSCLC progression and attenuate NSCLC sensitivity to chemotherapy drugs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Cinetocoros/metabolismo , Cinetocoros/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
2.
Arch Esp Urol ; 77(2): 183-192, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38583011

RESUMO

PURPOSE: This study aimed to determine the influence of miR-1297 on kidney injury in rats with diabetic nephropathy (DN) and its causal role. METHODS: A DN rat model was established through right kidney resection and intraperitoneal injection of streptozotocin (STZ). Sham rats did not undergo right kidney resection or STZ injection. The DN rats were divided into the DN model and antagomiR-1297 treatment groups. Kidney morphology was observed using hematoxylin and eosin staining. Renal function indices, including blood urea nitrogen (BUN), serum creatinine (SCr), and urinary protein, were measured using kits. Levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1ß, superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) were determined through enzyme-linked immunosorbent assay (ELISA). Fibrin (FN), collagen type I (Col I), and α-smooth muscle actin (α-SMA) were assessed through western blotting and real-time reverse transcription-polymerase chain reaction. Apoptosis was detected using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. miR-1297 targets were predicted using bioinformatic software and verified through luciferase reporter assay. Phosphatase and tensin homolog deleted on chromosome 10 (PTEN)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway expression was analyzed through western blotting. RESULTS: AntagomiR-1297 reduced BUN (p = 0.005), SCr (p = 0.012), and urine protein (p < 0.001) levels and improved kidney tissue morphology. It prevented renal interstitial fibrosis by decreasing FN, Col I, and α-SMA protein levels (all p < 0.001). AntagomiR-1297 increased SOD (p = 0.001) and GSH-Px (p = 0.002) levels. Additionally, it reduced levels of cell inflammatory factors, including TNF-α, IL-6, and IL-1ß (all p < 0.001), and alleviated apoptosis (p < 0.001) in rat kidney tissue with DN. miR-1297 was pinpointed as a target for PTEN. AntagomiR-1297 increased PTEN expression and suppressed PI3K and AKT phosphorylation (all p < 0.001). CONCLUSIONS: AntagomiR-1297 can mitigate renal fibrosis, renal inflammation, apoptosis, and oxidative stress levels through the PTEN/PI3K/AKT pathway.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , MicroRNAs , Ratos , Animais , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Antagomirs/metabolismo , Antagomirs/farmacologia , Rim , MicroRNAs/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Diabetes Mellitus/metabolismo
3.
Clin Endocrinol (Oxf) ; 100(3): 284-293, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172081

RESUMO

OBJECTIVE: Insulin receptor substract 1 (IRS1) protein is an important signal transduction adapter for extracellular signal transduction from insulin-like growth factor-1 receptor and its family members to IRS1 downstream proteins. IRS1 has been reported to be involved in tumourigenesis and metastasis in some of solid tumors. Investigating the role of IRS1 in thyroid cancer can help to screen high risk patients at the initial diagnosis. DESIGN, PATIENTS AND MEASUREMENTS: Immunohistochemical assay was used to detect the expression levels of IRS1 in 131 metastatic thyroid cancer tissues. Wound healing, cell invasion and colony formation assays were used to study the functions of IRS1 in vitro. RNA sequencing (RNA-seq) and Western blot analysis analyses were performed to examine the underlying regulation mechanisms of IRS1 in thyroid cancer cells. RESULTS: IRS1 was highly expressed in thyroid cancers and its expression was positively associated with distant metastasis and advanced clinical stages. In vitro studies demonstrated that IRS1 is an important mediator of migration, invasion and colony formation of thyroid cancer cells. RNA-seq showed that IRS1 promoted the metastasis of thyroid cancer by regulating epithelial-mesenchymal transition and phosphoinositide 3-kinase (PI3K)/AKT pathway. CONCLUSIONS: IRS1 overexpression contributes to the aggressiveness of thyroid cancer and is expected to be a stratified marker and a potential therapeutic target for thyroid cancer.


Assuntos
Fosfatidilinositol 3-Quinase , Neoplasias da Glândula Tireoide , Humanos , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias da Glândula Tireoide/patologia , Regulação Neoplásica da Expressão Gênica , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo
4.
Clin Exp Med ; 24(1): 17, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280023

RESUMO

Activated phosphoinositide 3-kinase delta syndrome (APDS) is a rare genetic disorder that presents clinically as a primary immunodeficiency. Clinical presentation of APDS includes severe, recurrent infections, lymphoproliferation, lymphoma, and other cancers, autoimmunity and enteropathy. Autosomal dominant variants in two independent genes have been demonstrated to cause APDS. Pathogenic variants in PIK3CD and PIK3R1, both of which encode components of the PI3-kinase, have been identified in subjects with APDS. APDS1 is caused by gain of function variants in the PIK3CD gene, while loss of function variants in PIK3R1 have been reported to cause APDS2. We conducted a review of the medical literature and identified 256 individuals who had a molecular diagnosis for APDS as well as age at last report; 193 individuals with APDS1 and 63 with APDS2. Despite available treatments, survival for individuals with APDS appears to be shortened from the average lifespan. A Kaplan-Meier survival analysis for APDS showed the conditional survival rate at the age of 20 years was 87%, age of 30 years was 74%, and ages of 40 and 50 years were 68%. Review of causes of death showed that the most common cause of death was lymphoma, followed by complications from HSCT. The overall mortality rate for HSCT in APDS1 and APDS2 cases was 15.6%, while the mortality rate for lymphoma was 47.6%. This survival and mortality data illustrate that new treatments are needed to mitigate the risk of death from lymphoma and other cancers as well as infection. These analyses based on real-world evidence gathered from the medical literature comprise the largest study of survival and mortality for APDS to date.


Assuntos
Síndromes de Imunodeficiência , Linfoma , Neoplasias , Doenças da Imunodeficiência Primária , Adulto , Humanos , Adulto Jovem , Classe I de Fosfatidilinositol 3-Quinases/genética , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/terapia , Mutação , Neoplasias/genética , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinases , Taxa de Sobrevida , Pessoa de Meia-Idade
5.
Pediatr Rheumatol Online J ; 22(1): 24, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287413

RESUMO

BACKGROUND: Germline heterozygous gain-of-function (GOF) mutations in the PIK3CD gene lead to a rare primary immunodeficiency disease known as activated phosphoinositide 3-kinase (PI3K) δ syndrome type 1(APDS1). Affected patients present a spectrum of clinical manifestations, particularly recurrent respiratory infections and lymphoproliferation, increased levels of serum immunoglobulin (Ig) M, Epstein-Barr virus (EBV) and cytomegalovirus (CMV) viremia. Due to highly heterogeneous phenotypes of APDS1, it is very likely that suspected cases may be misdiagnosed. METHODS: Herein we reported three patients with different clinical presentations but harboring pathogenic variants in PIK3CD gene detected by trio whole-exome sequencing (trio-WES) and confirmed by subsequent Sanger sequencing. RESULTS: Two heterozygous mutations (c.3061G > A, p.E1021K and c.1574 A > G, p.E525G) in PIK3CD (NM_005026.3) were identified by whole exome sequencing (WES) in the three patients. One of two patients with the mutation (c.3061G > A) presented with abdominal pain and diarrhea as the first symptoms, which was due to intussusception caused by multiple polyps of colon. The patient with mutation (c.1574 A > G) had an anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV)-like clinical manifestations, including multisystemic inflammation, acute nephritic syndrome, and positive perinuclear ANCA (p-ANCA), thus the diagnosis of ANCA-AAV was considered. CONCLUSIONS: Our study expands the spectrums of clinical phenotype and genotype of APDS, and demonstrates that WES has a high molecular diagnostic yield for patients with immunodeficiency related symptoms, such as respiratory infections, multiple ecchymosis, ANCA-associated vasculitis, multiple ileocecal polyps, hepatosplenomegaly, and lymphoid hyperplasia. TRIAL REGISTRATION: Retrospectively registered.


Assuntos
Infecções por Vírus Epstein-Barr , Infecções Respiratórias , Humanos , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinases/genética , Anticorpos Anticitoplasma de Neutrófilos , Herpesvirus Humano 4 , Classe I de Fosfatidilinositol 3-Quinases/genética , Fenótipo , Mutação , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/genética
6.
Chin J Physiol ; 66(5): 365-371, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929348

RESUMO

Colorectal cancer (CRC) is a cancer that occurs in the rectum or colon with a high incidence. Sperm-associated antigen 5 (SPAG5), a gene that regulates cell division, has been observed highly expressed in a variety of cancers, but its role in CRC is unclear. This study aimed to investigate the regulatory role of SPAG5 in CRC. The expression of SPAG5 in multiple cancers and normal tissues was predicted by The Cancer Genome Atlas and Tumor Immune Estimation Resource, and the expression of SPAG5 in human normal intestinal epithelial cells NCM460 and human CRC cell lines Caco2, HT29, SW480, and LOVO was verified by western blotting (WB). The effects of silencing SPAG5 on cell viability, proliferation, and apoptosis were then investigated by cell counting kit-8, WB, and flow cytometry. The effects of silencing SPAG5 on cell migration and invasion were investigated by scratch assay and transwell assay. Finally, the phosphorylation levels of phosphoinositide 3-kinase (PI3K) and AKT in cells were detected by WB. The results showed that SPAG5 was highly expressed in CRC and was verified by WB. Silencing of SPAG5 inhibited cell viability and proliferation and increased the cell apoptosis rate. Furthermore, both cell invasion and migration abilities were suppressed by the low expression of SPAG5. Finally, WB results found that the phosphorylation levels of PI3K and AKT were reduced after SPAG5 silencing. In summary, the results showed that SPAG5 can promote the proliferation and invasion of CRC cells by targeting the PI3K/AKT signaling pathway.


Assuntos
Neoplasias Colorretais , Fosfatidilinositol 3-Quinase , Humanos , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transição Epitelial-Mesenquimal , Células CACO-2 , Linhagem Celular Tumoral , Proliferação de Células , Transdução de Sinais , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
7.
BMC Cancer ; 23(1): 732, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553597

RESUMO

Non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR) mutation often obtain de novo resistance or develop secondary resistance to EGFR tyrosine kinase inhibitors (EGFR-TKIs), which restricts the clinical benefit for the patients. The activation of phosphatidylinositol 3-kinase (PI3K)/AKT signal pathway is one of the most important mechanisms for the EGFR-TKIs resistance beyond T790M mutation. There are currently no drugs simultaneously targeting EGFR and PI3K signal pathways, and combination of these two pathway inhibitors may be a possible strategy to reverse theses resistances. To test whether this combinational strategy works, we investigated the therapeutic effects and mechanisms of combining BYL719, a PI3Kα inhibitor, with gefitinib, an EGFR-TKI inhibitor in EGFR-TKIs resistance NSCLC models induced by PI3K/AKT activation. Our results demonstrated that PIK3CA mutated cells showed increased growth rate and less sensitive or even resistant to gefitinib, associated with increased PI3K/AKT expression. The combination of BYL719 and gefitinib resulted in synergistic effect compared with the single agents alone in EGFR-mutated NSCLC cells with PI3K/AKT activation. The inhibition of AKT phosphorylation by BYL719 increased the antitumor efficacy of gefitinib in these cell lines. Moreover, the combined effect and mechanism of gefitinib and BYL719 were also confirmed in the NSCLC cells and patient-derived organoids under 3D culture condition, as well as in vivo. Taken together, the data indicate that PIK3CA mutation induces more aggressive growth and gefitinib resistance in NSCLC cells, and the combination treatment with gefitinib and BYL719 is a promising therapeutic approach to overcoming EGFR-TKIs resistance induced by PI3K/AKT activation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Gefitinibe/farmacologia , Gefitinibe/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores ErbB , Neoplasias Pulmonares/patologia , Fosfatidilinositol 3-Quinase/genética , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Mutação
8.
Pediatr Rheumatol Online J ; 21(1): 71, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37475052

RESUMO

BACKGROUND: Primary immunodeficiencies are immunological disorders caused by gene mutations involved in immune system development and activation. Recently, activated phosphoinositide 3-kinase delta syndrome (APDS) due to mutations in the phosphoinositide 3-kinase (PI3K), phosphatidylinositol-4, 5-bisphosphate 3-kinase, catalytic subunit delta gene (PIK3CD), and phosphoinositide 3-kinase regulatory subunit 1 (PIK3R1) genes have been reported to induce a combined immunodeficiency syndrome leading to senescent T cells, lymphadenopathy, and immunodeficiency. The exact diagnosis of these deficiencies is essential for treatment and prognosis. In recent years, targeted treatment with selective PI3Kd inhibitors has had a significant effect on controlling the symptoms of these patients. CASE PRESENTATION: In this case report, we represent a 27-month-old girl with recurrent fever, an increased level of inflammatory markers, and erythema nodosum, who was referred to the rheumatology clinic. In the course of evaluations, because of the lack of clinical improvement with usual treatments, and a history of frequent respiratory infections, combined immunodeficiency was diagnosed in the immunological investigations. Moreover, whole-exome sequencing was performed for her. CONCLUSION: The genetic analysis found a novel variant of PIK3CD (c.1429 G > A) in the patient. Following daily antibiotic prophylaxis and monthly IV therapy, the patient's frequent infections and fevers were controlled.


Assuntos
Síndromes de Imunodeficiência , Doenças da Imunodeficiência Primária , Feminino , Humanos , Pré-Escolar , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/uso terapêutico , Classe I de Fosfatidilinositol 3-Quinases/genética , Síndromes de Imunodeficiência/diagnóstico , Síndromes de Imunodeficiência/genética , Doenças da Imunodeficiência Primária/genética , Doenças da Imunodeficiência Primária/complicações , Mutação , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/uso terapêutico
9.
J Allergy Clin Immunol ; 152(4): 984-996.e10, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37390899

RESUMO

BACKGROUND: Activated phosphoinositide-3-kinase δ syndrome (APDS) is an inborn error of immunity (IEI) with infection susceptibility and immune dysregulation, clinically overlapping with other conditions. Management depends on disease evolution, but predictors of severe disease are lacking. OBJECTIVES: This study sought to report the extended spectrum of disease manifestations in APDS1 versus APDS2; compare these to CTLA4 deficiency, NFKB1 deficiency, and STAT3 gain-of-function (GOF) disease; and identify predictors of severity in APDS. METHODS: Data was collected from the ESID (European Society for Immunodeficiencies)-APDS registry and was compared with published cohorts of the other IEIs. RESULTS: The analysis of 170 patients with APDS outlines high penetrance and early onset of APDS compared to the other IEIs. The large clinical heterogeneity even in individuals with the same PIK3CD variant E1021K illustrates how poorly the genotype predicts the disease phenotype and course. The high clinical overlap between APDS and the other investigated IEIs suggests relevant pathophysiological convergence of the affected pathways. Preferentially affected organ systems indicate specific pathophysiology: bronchiectasis is typical of APDS1; interstitial lung disease and enteropathy are more common in STAT3 GOF and CTLA4 deficiency. Endocrinopathies are most frequent in STAT3 GOF, but growth impairment is also common, particularly in APDS2. Early clinical presentation is a risk factor for severe disease in APDS. CONCLUSIONS: APDS illustrates how a single genetic variant can result in a diverse autoimmune-lymphoproliferative phenotype. Overlap with other IEIs is substantial. Some specific features distinguish APDS1 from APDS2. Early onset is a risk factor for severe disease course calling for specific treatment studies in younger patients.


Assuntos
Fosfatidilinositol 3-Quinase , Doenças da Imunodeficiência Primária , Humanos , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases , Antígeno CTLA-4/genética , Mutação , Doenças da Imunodeficiência Primária/genética , Sistema de Registros
10.
Pediatr Dermatol ; 40(6): 1115-1119, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37190882

RESUMO

We report an unusual case of facial infiltrating lipomatosis with hemimegalencephaly and lymphatic malformations. In addition to the clinical data and imaging findings, detection of a heterozygous PIK3CA nonhotspot known pathogenic variant C420R in a facial epidermal nevus provided novel insight into the pathogenic effect of somatic PIK3CA mutations.


Assuntos
Hemimegalencefalia , Lipomatose , Humanos , Fosfatidilinositol 3-Quinase/genética , Domínio Catalítico , Lipomatose/complicações , Lipomatose/genética , Lipomatose/diagnóstico , Mutação
11.
Thorac Cancer ; 14(8): 724-735, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737405

RESUMO

BACKGROUND: Lung adenocarcinomas (LUAD) remain the leading cause of death in many countries. In this study, we investigated the role of division cycle-associated 4 (CDCA4) in the carcinogenesis of LUADs. METHODS: Real-time fluorescent quantitative polymerase chain reaction and western blot were performed to detect the messenger RNA and protein levels of CDCA4 in cells. Cell counting kit 8, real-time cell analysis, clone formation, EdU assays, and cell-cycle assays were used to preliminarily investigate the proliferation and cell-cycle-related functions of CDCA4 in lung adenocarcinoma. Immunoprecipitation assays were used to identify possible targets of CDCA4. A xenograft model was used to examine how CDCA4 knockdown affects LUAD cells growth in vivo. RESULTS: We found that the expression of CDCA4 was upregulated in LUAD cell lines. When CDCA4 was knocked out, the ability of LUAD cells to proliferate was dramatically reduced, and the cell cycle was stalled in the S phase. Meanwhile, boosting the CDCA4 expression had the opposite effect. The critical protein levels of phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) signaling pathway were subsequently examined. The findings demonstrated that elevated CDCA4 lowered the phosphate and tensin homolog expression and increased the p-PI3K and p-AKT levels. Moreover, we demonstrated that CDCA4 favorably regulated IGF2BP1, a downstream target. The downregulation of the IGF2BP1 expression could reverse the proliferation promotion effect induced by the CDCA4 overexpression. CONCLUSIONS: CDCA4 can operate as an oncogenic factor to control the growth of lung adenocarcinoma via the PI3K/AKT pathway.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/patologia , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
12.
FEBS J ; 290(4): 1134-1150, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36180981

RESUMO

Lung cancer is the most aggressive cancer with the highest mortality and incidence rates worldwide. MicroRNAs have been identified as potential targets for non-small cell lung cancer (NSCLC) treatment. However, the modulatory role of miR-514b-5p in NSCLC progression is little known. In the present study, miRNA expression datasets for NSCLC were downloaded from the Cancer Genome Atlas and Gene Ontology Omnibus databases. Gene expression was assessed using a quantitative real-time PCR, and western blot analysis and immunohistochemical staining was used to determine protein expression. Gain and loss of function experiments were performed to investigate the impact of miR-514b-5p and small glutamine-rich tetratricopeptide repeat-containing protein beta (SGTB) on cell proliferation and apoptosis. RNA immunoprecipitation and dual-luciferase assays were performed to analyse the target gene of miR-514b-5p. The biological roles of miR-514b-5p were lastly evaluated using nude mouse tumorigenicity assays in vivo. We found that miR-514b-5p was dramatically increased in NSCLC tissues and higher miR-514b-5p expression was associated with poorer overall survival in NSCLC patients. Furthermore, overexpression of miR-514b-5p promoted NSCLC cell growth and suppressed apoptosis by inducing the activation of the phosphatidylinositol-3-kinase (PI3K)/AKT and p38 signalling pathways. Mechanistically, dual-luciferase and the RNA immunoprecipitation results highlighted that SGTB was a target gene of miR-514b-5p. Moreover, overexpression of SGTB reduced cell division and promoted apoptosis in vitro through blocking the PI3K/AKT and p38 signalling pathways. Our findings indicated that miR-514b-5p contributes to carcinoma progression in NSCLC via the PI3K/AKT and p38 signalling pathways by targeting SGTB and this could be a promising diagnostic and therapeutic target for the treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Chaperonas Moleculares , Animais , Camundongos , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Glutamina/metabolismo , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Repetições de Tetratricopeptídeos , Humanos
13.
Int J Med Sci ; 19(13): 1835-1846, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438913

RESUMO

Objective: To determine the effect and mechanism of the long non-coding RNA (lncRNA) ncRuPAR (non-protein coding RNA, upstream of coagulation factor II thrombin receptor [F2R]/protease-activated receptor-1 [PAR-1]) in human gastric cancer. Methods: HGC-27-ncRuPAR overexpression and MGC-803-ncRuPAR-RNAi knockdown gastric cancer cell lines were established. We assessed the effect of ncRuPAR on cell proliferation, apoptosis, migration, and invasion using Cell Counting Kit 8, flow cytometry, scratch and transwell assays, respectively. Differentially expressed genes in HGC-27-ncRuPAR overexpression and HGC-27-empty vector cell lines were identified using Affymetrix GeneChip microarray analysis. Ingenuity Pathway Analysis (IPA) of the microarray results was subsequently conducted to identify ncRuPAR-enriched pathways, followed by validation using real time-quantitative PCR (RT-qPCR). As one of the top enriched pathways, phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway was further examined by western blotting to determine its role in ncRuPAR-mediated regulation of gastric cancer pathogenesis. Results: ncRuPAR inhibited human gastric cancer cell proliferation and induced G1/S phase arrest and apoptosis, but did not affect migration or invasion in vitro. Overexpression of ncRuPAR in vitro was found to inhibit its known target PAR-1, as well as PI3K/Akt signaling. The downstream targets of PI3K/Akt, cyclin D1 was downregulated, but there was no change in expression level of B-cell lymphoma 2 (Bcl-2). Conclusions: We showed that lncRNA-ncRuPAR could inhibit tumor cell proliferation and promote apoptosis of human gastric cancer cells, potentially by inhibiting PAR-1, PI3K/Akt signaling, and cyclin D1. The results suggest a potential role for lncRNAs as key regulatory hubs in GC progression.


Assuntos
RNA Longo não Codificante , Receptor PAR-1 , Neoplasias Gástricas , Humanos , Apoptose/genética , Proliferação de Células/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia
14.
Biochem J ; 479(19): 2131-2151, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36240067

RESUMO

The development of resistance and the activation of bypass pathway signalling represents a major problem for the clinical application of protein kinase inhibitors. While investigating the effect of either a c-Rel deletion or RelAT505A phosphosite knockin on the Eµ-Myc mouse model of B-cell lymphoma, we discovered that both NF-κB subunit mutations resulted in CHK1 inhibitor resistance, arising from either loss or alteration of CHK1 activity, respectively. However, since Eµ-Myc lymphomas depend on CHK1 activity to cope with high levels of DNA replication stress and consequent genomic instability, it was not clear how these mutant NF-κB subunit lymphomas were able to survive. To understand these survival mechanisms and to identify potential compensatory bypass signalling pathways in these lymphomas, we applied a multi-omics strategy. With c-Rel-/- Eµ-Myc lymphomas we observed high levels of Phosphatidyl-inositol 3-kinase (PI3K) and AKT pathway activation. Moreover, treatment with the PI3K inhibitor Pictilisib (GDC-0941) selectively inhibited the growth of reimplanted c-Rel-/- and RelAT505A, but not wild type (WT) Eµ-Myc lymphomas. We also observed up-regulation of a RHO/RAC pathway gene expression signature in both Eµ-Myc NF-κB subunit mutation models. Further investigation demonstrated activation of the RHO/RAC effector p21-activated kinase (PAK) 2. Here, the PAK inhibitor, PF-3758309 successfully overcame resistance of RelAT505A but not WT lymphomas. These findings demonstrate that up-regulation of multiple bypass pathways occurs in CHK1 inhibitor resistant Eµ-Myc lymphomas. Consequently, drugs targeting these pathways could potentially be used as either second line or combinatorial therapies to aid the successful clinical application of CHK1 inhibitors.


Assuntos
Linfoma , Fosfatidilinositol 3-Quinases , Animais , Inositol , Linfoma/tratamento farmacológico , Linfoma/genética , Linfoma/metabolismo , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Regulação para Cima , Quinases Ativadas por p21/genética
15.
Zool Res ; 43(6): 989-1004, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36257830

RESUMO

Ketamine, a rapid-acting antidepressant drug, has been used to treat major depressive disorder and bipolar disorder (BD). Recent studies have shown that ketamine may increase the potential risk of treatment-induced mania in patients. Ketamine has also been applied to establish animal models of mania. At present, however, the underlying mechanism is still unclear. In the current study, we found that chronic lithium exposure attenuated ketamine-induced mania-like behavior and c-Fos expression in the medial prefrontal cortex (mPFC) of adult male mice. Transcriptome sequencing was performed to determine the effect of lithium administration on the transcriptome of the PFC in ketamine-treated mice, showing inactivation of the phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway. Pharmacological inhibition of AKT signaling by MK2206 (40 mg/kg), a selective AKT inhibitor, reversed ketamine-induced mania. Furthermore, selective knockdown of AKT via AAV-AKT-shRNA-EGFP in the mPFC also reversed ketamine-induced mania-like behavior. Importantly, pharmacological activation of AKT signaling by SC79 (40 mg/kg), an AKT activator, contributed to mania in low-dose ketamine-treated mice. Inhibition of PI3K signaling by LY294002 (25 mg/kg), a specific PI3K inhibitor, reversed the mania-like behavior in ketamine-treated mice. However, pharmacological inhibition of mammalian target of rapamycin (mTOR) signaling with rapamycin (10 mg/kg), a specific mTOR inhibitor, had no effect on ketamine-induced mania-like behavior. These results suggest that chronic lithium treatment ameliorates ketamine-induced mania-like behavior via the PI3K-AKT signaling pathway, which may be a novel target for the development of BD treatment.


Assuntos
Transtorno Depressivo Maior , Ketamina , Doenças dos Roedores , Masculino , Camundongos , Animais , Ketamina/toxicidade , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Lítio/farmacologia , Mania , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinase/farmacologia , RNA Interferente Pequeno , Serina-Treonina Quinases TOR/genética , Transdução de Sinais , Antidepressivos/uso terapêutico , Antidepressivos/farmacologia , Sirolimo/farmacologia , Compostos de Lítio/farmacologia , Mamíferos , Doenças dos Roedores/tratamento farmacológico
16.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232773

RESUMO

Chronic relapsing inflammatory bowel disease is strongly linked to an increased risk of colitis-associated cancer (CAC). One of the well-known inflammatory carcinogenesis pathways, phosphatidylinositol 3-kinase (PI3K), was identified to be a crucial mechanism in long-standing ulcerative colitis (UC). The goal of this study was to identify somatic variants in the cytokine-induced PI3K-related genes in UC, colorectal cancer (CRC) and CAC. Thirty biopsies (n = 8 long-standing UC, n = 11 CRC, n = 8 paired normal colorectal mucosa and n = 3 CAC) were subjected to targeted sequencing on 13 PI3K-related genes using Illumina sequencing and the SureSelectXT Target Enrichment System. The Genome Analysis Toolkit was used to analyze variants, while ANNOVAR was employed to detect annotations. There were 5116 intronic, 355 exonic, 172 untranslated region (UTR) and 59 noncoding intronic variations detected across all samples. Apart from a very small number of frameshifts, the distribution of missense and synonymous variants was almost equal. We discovered changed levels of IL23R, IL12Rß1, IL12Rß2, TYK2, JAK2 and OSMR in more than 50% of the samples. The IL23R variant in the UTR region, rs10889677, was identified to be a possible variant that might potentially connect CAC with UC and CRC. Additional secondary structure prediction using RNAfold revealed that mutant structures were more unstable than wildtype structures. Further functional research on the potential variants is, therefore, highly recommended since it may provide insight on the relationship between inflammation and cancer risk in the cytokine-induced PI3K pathway.


Assuntos
Colite Ulcerativa , Neoplasias Associadas a Colite , Neoplasias Colorretais , Citocinas , Fosfatidilinositol 3-Quinase , Colite Ulcerativa/genética , Neoplasias Associadas a Colite/genética , Neoplasias Colorretais/genética , Citocinas/genética , Humanos , Recidiva Local de Neoplasia/genética , Fosfatidilinositol 3-Quinase/genética , Regiões não Traduzidas
17.
Islets ; 14(1): 184-199, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36218109

RESUMO

This study aims to explore the molecular mechanism of N6-methyladenosine (m6A) modification-related long noncoding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA) network in regulating autophagy and affecting the occurrence and development of acute pancreatitis (AP). RNA-seq datasets related to AP were obtained from Gene Expression Omnibus (GEO) database and merged after batch effect removal. lncRNAs significantly related to m6A in AP, namely candidate lncRNA, were screened by correlation analysis and differential expression analysis. In addition, candidate autophagy genes were screened through the multiple databases. Furthermore, the key pathways for autophagy to play a role in AP were determined by functional enrichment analysis. Finally, we predicted the miRNAs binding to genes and lncRNAs through TargetScan, miRDB and DIANA TOOLS databases and constructed two types of lncRNA-miRNA-mRNA regulatory networks mediated by upregulated and downregulated lncRNAs in AP. Nine lncRNAs related to m6A were differentially expressed in AP, and 21 candidate autophagy genes were obtained. Phosphoinositide 3-kinase (PI3K)-Akt signaling pathway and Forkhead box O (FoxO) signaling pathway might be the key pathways for autophagy to play a role in AP. Finally, we constructed a lncRNA-miRNA-mRNA regulatory network. An upregulated lncRNA competitively binds to 13 miRNAs to regulate 6 autophagy genes, and a lncRNA-miRNA-mRNA regulatory network in which 2 downregulated lncRNAs competitively bind to 7 miRNAs to regulate 2 autophagy genes. m6A modification-related lncRNA Pvt1, lncRNA Meg3 and lncRNA AW112010 may mediate the lncRNA-miRNA-mRNA network, thereby regulating autophagy to affect the development of AP.


Assuntos
MicroRNAs , Pancreatite , RNA Longo não Codificante , Doença Aguda , Autofagia/genética , Redes Reguladoras de Genes , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Pancreatite/genética , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
J Pathol ; 258(4): 382-394, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36073856

RESUMO

PTEN is one of the most commonly inactivated tumour suppressor genes in sporadic cancer. Germline heterozygous PTEN gene alterations also underlie PTEN hamartoma tumour syndrome (PHTS), a rare human cancer-predisposition condition. A key feature of systemic PTEN deregulation is the inability to adequately dampen PI3-kinase (PI3K)/mTORC1 signalling. PI3K/mTORC1 pathway inhibitors such as rapamycin are therefore expected to neutralise the impact of PTEN loss, rendering this a more druggable context compared with those of other tumour suppressor pathways such as loss of TP53. However, this has not been explored in cancer prevention in a model of germline cancer predisposition, such as PHTS. Clinical trials of short-term treatment with rapamycin have recently been initiated for PHTS, focusing on cognition and colon polyposis. Here, we administered a low dose of rapamycin from the age of 6 weeks onwards to mice with heterozygous germline Pten loss, a mouse model that recapitulates most characteristics of human PHTS. Rapamycin was well tolerated and led to a highly significant improvement of survival in both male and female mice. This was accompanied by a delay in, but not full blockade of, the development of a range of proliferative lesions, including gastro-intestinal and thyroid tumours and endometrial hyperplasia, with no impact on mammary and prostate tumours, and no effect on brain overgrowth. Our data indicate that rapamycin may have cancer prevention potential in human PHTS. This might also be the case for sporadic cancers in which genetic PI3K pathway activation is an early event in tumour development, such as endometrial cancer and some breast cancers. To the best of our knowledge, this is the first report of a long-term treatment of a germline cancer predisposition model with a PI3K/mTOR pathway inhibitor. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Síndrome do Hamartoma Múltiplo , Neoplasias da Glândula Tireoide , Camundongos , Animais , Masculino , Feminino , Humanos , Lactente , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Fosfatidilinositol 3-Quinases/genética , Longevidade , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Síndrome do Hamartoma Múltiplo/tratamento farmacológico , Síndrome do Hamartoma Múltiplo/genética , Síndrome do Hamartoma Múltiplo/patologia , Fosfatidilinositol 3-Quinase/genética , Inibidores de Fosfoinositídeo-3 Quinase , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Células Germinativas/metabolismo , Mutação em Linhagem Germinativa
19.
Cells ; 11(17)2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36078116

RESUMO

We have previously shown that the conditional deletion of either the p110α catalytic subunit of phosphatidylinositol 3-kinase (PI3K), or its opposing phosphatase, phosphatase and tensin homolog (PTEN), had distinct effects on lens growth and homeostasis. The deletion of p110α reduced the levels of phosphorylated Akt and equatorial epithelial cell proliferation, and resulted in smaller transparent lenses in adult mice. The deletion of PTEN increased levels of phosphorylated Akt, altered lens sodium transport, and caused lens rupture and cataract. Here, we have generated conditional p110α/PTEN double-knockout mice, and evaluated epithelial cell proliferation and lens homeostasis. The double deletion of p110α and PTEN rescued the defect in lens size seen after the single knockout of p110α, but accelerated the lens rupture phenotype seen in PTEN single-knockout mice. Levels of phosphorylated Akt in double-knockout lenses were significantly higher than in wild-type lenses, but not as elevated as those reported for PTEN single-knockout lenses. These results showed that the double deletion of the p110α catalytic subunit of PI3K and its opposing phosphatase, PTEN, exacerbated the rupture defect seen in the single PTEN knockout and alleviated the growth defect observed in the single p110α knockout. Thus, the integrity of the PI3K signaling pathway was absolutely essential for proper lens homeostasis, but not for lens growth.


Assuntos
Cristalino , PTEN Fosfo-Hidrolase , Fosfatidilinositol 3-Quinase , Animais , Homeostase , Cristalino/crescimento & desenvolvimento , Cristalino/metabolismo , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
20.
Elife ; 112022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35976093

RESUMO

The tips of the developing respiratory buds are home to important progenitor cells marked by the expression of SOX9 and ID2. Early in embryonic development (prior to E13.5), SOX9+progenitors are multipotent, generating both airway and alveolar epithelium, but are selective progenitors of alveolar epithelial cells later in development. Transcription factors, including Sox9, Etv5, Irx, Mycn, and Foxp1/2 interact in complex gene regulatory networks to control proliferation and differentiation of SOX9+progenitors. Molecular mechanisms by which these transcription factors and other signaling pathways control chromatin state to establish and maintain cell-type identity are not well-defined. Herein, we analyze paired gene expression (RNA-Seq) and chromatin accessibility (ATAC-Seq) data from SOX9+ epithelial progenitor cells (EPCs) during embryonic development in Mus musculus. Widespread changes in chromatin accessibility were observed between E11.5 and E16.5, particularly at distal cis-regulatory elements (e.g. enhancers). Gene regulatory network (GRN) inference identified a common SOX9+ progenitor GRN, implicating phosphoinositide 3-kinase (PI3K) signaling in the developmental regulation of SOX9+ progenitor cells. Consistent with this model, conditional ablation of PI3K signaling in the developing lung epithelium in mouse resulted in an expansion of the SOX9+ EPC population and impaired airway epithelial cell differentiation. These data demonstrate that PI3K signaling is required for epithelial patterning during lung organogenesis, and emphasize the combinatorial power of paired RNA and ATAC seq in defining regulatory networks in development.


Studying how lungs develop has helped us understand and treat often-devastating lung diseases. This includes diseases like cystic fibrosis which result from spelling mistakes known as mutations in a person's genetic code. However, not all lung diseases involve mutations. Many other diseases, in both adults and children, are caused by genes failing to switch on or off at some point during lung development. DNA is surrounded by various proteins which package it into a compressed structure known as chromatin. Cells can control which genes are turned on or off by modifying how tightly packed parts of the genetic code are within chromatin. Changes in chromatin accessibility, also known as 'epigenetic' changes, are a normal part of development, and guide cells towards specific jobs or identities as an organ matures. However, how this happens in the developing lung is poorly understood. Here, Khattar, Fernandes et al. set out to determine how chromatin accessibility shapes development of the tissue lining the lungs, focusing on a group of progenitor cells which produce the protein SOX9. These cells are initially found at the tips of the early lung, where they go on to develop into the cells that line the whole of the mature organ. Initial experiments used large-scale genetic techniques to measure gene activity and chromatin accessibility simultaneously in progenitor cells extracted from the lungs of mice. Khattar, Fernandes et al. were then able to predict the signaling pathways that shape the lung lining based on which genes were surrounded by unpacked chromatin, and determine the proteins responsible for these epigenetic changes. This included the signaling pathway Phosphatidylinositol 3 kinase (PI3K) which is involved in a number of cellular processes. Additional experiments in mice confirmed that the PI3K pathway became active very early in lung development and remained so until adulthood. In contrast, mice lacking a gene that codes for a key part of the PI3K pathway had defective lungs which failed to develop a proper lining. The data generated in this study will provide an important resource for future studies investigating how epigenetic changes drive normal lung development. Khattar, Fernandes et al. hope that this knowledge will help researchers to better understand the cause of human lung diseases, and identify already available 'epigenetic drugs' which could be repurposed to treat them.


Assuntos
Redes Reguladoras de Genes , Fosfatidilinositol 3-Quinases , Animais , Diferenciação Celular/genética , Cromatina , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Pulmão , Camundongos , Fosfatidilinositol 3-Quinase/genética , Fosfatidilinositol 3-Quinases/genética , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...